2006年9月28日

新材料とナノ構造制御

奈良先端科学技術大学院大学 物質創成科学研究科 内山 潔

半導体の世界は日進月歩(ドッグイヤー?)

10年ではなく1.5年で一昔!!

	1	アの注即(Mooro's Law)						
	4-,		レニッパブクター教	日	集積度 (個)	クロッ ク (MHz)	プロセス (μm)	型番
			10,000,000,000	1971	2300	0.108	10	4004
			1,000,000,000	1972	3500	0.2	10	8008
		Itanium*プロセッサー	100,000,000	1974	6000	2	6	8080
		Pentium [®] III プロセッサー Pentium [®] 4	100,000,000	1978	29000	10	3	8086
	Pent		10,000,000	1982	134000	12.5	1.5	80286
			1,000,000	1985	275000	33	1	Intel386
Int	el386 [™] プロセッサー		100.000	1989	1200000	50	1	Intel486
80	802	86	100,000	1993	3100000	66	0.8	Pentium
4004	3080		10,000	1995	5500000	200	0.35	Pentium PRO
1070	1000	1000 2000 20	1,000	1997	7500000	450	0.35	Pentium2
19/0	1980	1990 2000 20	10	1999	9500000	500	0.25	Pentium3
				2000	42000000	1400	0.13	Pentium4
「トラン	ンジスターの集積度	は、約2年で倍増する」という半導体技術の進歩に関	する予測。	2005	↑ ?	3800	0 09	↑

マイクロプロセッサ(インテル)の変遷

Intel JapanのHPより引用

インテル コーボレーション名誉会長のゴードン・ムーアが 1965 年に初めて学会で公表。

ブレークスルーを実現するためには

- 1. 微細化、ナノ構造化
 小さいことはいいことだ!! →スケーリング則
- 2. 新材料

元素は92しかないが 組合せは無限

- 3. 表面/界面の利用 表面は本体(バルク)と違う
- 4. 複合化
 異種材料をナノサイズで組合わせると → 人工格子
 量子効果
- 5. 温故知新

昔のアイデアを最新の技術で

微細化-スケーリング則

集積化により

高性能化(高速動作、低消費電力etc)が実現

例)消費電力 $P = fC_L V_{DD}^2$ $C_L \approx C_G = LWC_{OX}$

遮断周波数 $f_T = \mu V_D / 2\pi L^2$

	スケール後		スケール後		
寸 法	£	FET数/面積 k ²			
L	1/k	電 流			
W	1/k	ドレイン電流I回	1/k		
電日	E	消費電力			
Vgs, Vdd	1/k	FETあたり	1/k²		
Vтн	1	ゲートあたり	1/k³ (1/k²)*		
物理定	数	単位面積あたり	1/k (1)*		
μ	1	チップあたり	k (k²)*		
Ksi02	1	遅 延			
Cox	k	ゲートあたり	1/k		

表:黒木 幸令著「学びやすい集積回路工学」(昭晃堂)より

*はクロックがk倍になったとき

ダマシンプロセス

土台となるSi酸化物を エッチングする

Cuを埋め込む (スパッタ、メッキ)

CMP (Chemical Mechanical Polishing) で平坦化する

8層メタル構造

配線抵抗の低減には多層膜化(線幅に余裕)も有効

Butリーク回避のため酸化膜を厚くすると、、、
$$C_G = \varepsilon_0 \varepsilon_r \frac{S}{d}$$
より C_G が低下→ g_m 低下

対策:高誘電率&高絶縁性の材料を使う

SiO₂ 3~4
ZrO₂
HfO₂
La₂O₃
$$15\sim30$$
 \downarrow ただし酸化物とSi界面に ZrSi_xO_y
SiO₂酸化膜が形成 \downarrow HfSi_xO_y
→界面が凸凹 $LaSi_xO_y$ $10\sim20$
Al₂O₃ ~10

EOT(Effective Oxide Thickness)

SiO₂の膜厚に換算した酸化物の膜厚を言う

引用:MIRAIプロジェクトHP http://www.miraipj.jp

黒木著「学びやすい集積回路工学」

酸化物薄膜応用-強誘電体メモリ-

強誘電体とは?

印加電圧ゼロで、2つの安定した分極状態を取り得る。

この2つの分極状態をディジタル情報の"1"と"0"に対応 させることで、<mark>不揮発性メモリ</mark>が実現できる。

不揮発性 低消費電力 高速動作

真空装置不要!!

スプレーMOCVD法の特徴					
・真空装置が不要(低い生産コスト)?					
・比較的低い堆積温度 (100-500°C)?					
・高品質薄膜作製が可能?					
・大面積均一性に優れる?					
・高い堆積レート? etc.					

クラス1000クリーンルームドラフト内

• 原料間欠噴霧の導入

アトマイザー サセプター&ホットプレート

スプレーMOCVD法-段差被覆性(PZT)

トレンチ構造Si基板上で良好な段差被覆性を実現 段差被覆率:約75%を達成 🔿 大容量FeRAM生産への適用可

スピン・オン法(CSD法)

原料溶液を塗布→焼成して成膜

 ・ゾル-ケル溶液
 アルコキシドを部分加水分解 &重合したもの。
 ROM+H₂O→2ROH+2MO
 ・MOD溶液
 金属有機物を有機溶媒に 溶かしたもの

<u>長所</u>

・Low Cost(ただし成膜時間長)

•成膜安定性、面内均一性良

<u>短所</u>

・段差被覆性はNG ・結晶成長制御は難しい

PLZTの高品位成膜に成功

PLZTの成膜条件依存性(スピン・オン法)

メタノール添加により結晶性がさらに向上

— 100nm X50,000 14mm

100nm

041199

Solution : 9wt%

Depo:6times : 500nm

15KV

メタノール塗布

電気光学効果

バルク並(従来の10倍)の電気光学効果を実現 →集積化光デバイスの実現に前進

